Probability Densities in Strong Turbulence

نویسنده

  • Victor Yakhot
چکیده

According to modern developments in turbulence theory, the ”dissipation” scales (u.v. cut-offs) η form a random field related to velocity increments δηu. In this work we, using Mellin’s transform combined with the Gaussain large -scale boundary condition, calculate probability densities (PDFs) of velocity increments P (δru, r) and the PDF of the dissipation scales Q(η,Re), where Re is the large-scale Reynolds number. The resulting expressions strongly deviate from the Log-normal PDF PL(δru, r) often quoted in the literature. It is shown that the probability density of the small-scale velocity fluctuations includes information about the large (integral) scale dynamics which is responsible for deviation of P (δru, r) from PL(δru, r). A framework for evaluation of the PDFs of various turbulence characteristics involving spatial derivatives is developed. The exact relation, free of spurious Logarithms recently discussed in Frisch et al (J. Fluid Mech. 542, 97 (2005)), for the multifractal probability density of velocity increments, not based on the steepest descent evaluation of the integrals is obtained and the calculated function D(h) is close to experimental data. A novel derivation (Polyakov, 2005), of a well-known result of the multi-fractal theory [Frisch, ”Turbulence. Legacy of A.N.Kolmogorov”, Cambridge University Press, 1995)) , based on the concepts described in this paper, is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 5 Probability Densities in Strong Turbulence

According to modern developments in turbulence theory, the ”dissipation” scales (u.v. cut-offs) η form a random field related to velocity increments δηu. In this work we, using Mellin’s transform combined with the Gaussain large -scale boundary condition, calculate probability densities (PDFs) of velocity increments P (δru, r) and the PDF of the dissipation scales Q(η,Re), where Re is the large...

متن کامل

5 Probability Densities in Strong Turbulence

According to modern developments in turbulence theory, the ”dissipation” scales (u.v. cut-offs) η form a random field related to velocity increments δηu. In this work we, using Mellin’s transform combined with the Gaussain large -scale boundary condition, calculate probability densities (PDFs) of velocity increments P (δru, r) and the PDF of the dissipation scales Q(η,Re), where Re is the large...

متن کامل

Density probability distribution functions of diffuse gas in the Milky Way

In a search for the signature of turbulence in the diffuse interstellar medium in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and H I column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ioni...

متن کامل

20 07 Density Fluctuations in MHD turbulence : spectra , intermittency and topology

We perform three-dimensional (3D) compressible MHD simulations over many dynamical times for an extended range of sonic and Alfvén Mach numbers and analyze the statistics of 3D density and 2D column density, which include probability distribution functions, spectra, skewness, kurtosis, She-Lévêque exponents, and genus. In order to establish the relation between the statistics of the ob-servable...

متن کامل

Generalized statistical mechanics and fully developed turbulence

The statistical properties of fully developed hydrodynamic turbulence can be successfully described using methods from nonextensive statistical mechanics. The predicted probability densities and scaling exponents precisely coincide with what is measured in various turbulence experiments. As a dynamical basis for nonextensive behaviour we consider nonlinear Langevin equations with fluctuating fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006